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Unsupervised	Machine	Learning	

•  Allows	finding	hidden	structure	in	large	data	sets	with	liMle	or	no	
apriori	knowledge	
	

•  A	lot	of	focus	on	“supervised”	machine	learning,	i.e.	learning	using	
labeled	data	
	

	unsupervised	learning	“next	fron2er”	[LeCunn	2016]	
	

•  Examples	include:	
•  Clustering	(K-means,	Gaussian	Mixture	Models,	

hierarchical,	)	
•  Dimensionality	reduc2on	(PCA,	ICA,	T-SNE)	
•  Neural	networks	(autoencoders,	adversarial	networks)	
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K-means	clustering	

a	
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Example	series	k-means	clustering	from	
neuroscience		

Detect	neurons	with	2me-
series	which	have	high	
correla2ons	

Original	data	series	

K-means	clustered	series	

Freeman,	Nature	Methods	11,	941–950	(2014)	
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XGC1	

•  Full-f,	gyrokine2c	turbulence	
code	focused	on	the	edge	
(pedestal	+	SOL):	

•  Neutrals,	collisions,	sheath	
physics,	etc.	
	

•  Massively	parallel,	requires	
100M+	CPU	hours	(HPC)	

•  Generates	TB’s	of	data	per	
simula2on	

How to extract useful 
information?  
Natural candidate for 
unsupervised machine 
learning 
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Apache	Spark	+	Thunder:	Image	and	2me	series	
distributed	compu2ng	streamlined		

PROS	

•  Distributed	compu2ng,	easily	
scale	up	analysis	

•  Simple	interface,	Python	bindings	

•  Resiliency	

•  Available	on	NERSC	

•  Machine	learning	libraries	(MLlib)	
op2mal	for	parallel	processing		

CONS	
•  Networking	slower	than	MPI	
•  Complex	communica2on	

paMerns	are	difficult	to	
implement	(beMer	for	
embarrassingly	parallel)	

•  Learning	curve	
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Spark	code,	reading	of	
scien2fic	data	
•  Read	data	in	batches	from	

parallel	file	system,	split	in-place	
for	individual	records	
	

•  Single	node	(22	cores)	gave	data	
reading	scaling	of	1	GB/s	up	to	
33	GB	
	

•  Machine	learning	algorithm	
syntax	simple,		similar	to	scikit-
learn,	but	Spark	allows	scaling	

import	adios	as	ad 
import	numpy	as	np 
from	pyspark.mllib.clustering	import	
BisectingKMeans	
 
def	read(ind):	
								f	=	ad.-ile('/path/to/-ile')	
								data	=	f['data_name'][:,ind[0]:ind[-1]+1,:]	
								f.close()	
								return	data	
	
def	split(data):	
								for	d	in	np.rollaxis(data,1):	
																			yield	d	
 
Nnodes	=	10 
NcoresPerNode	=	22 
Nparts	=	Nnodes*NcoresPerNode*4 
indices	=	np.array_split(np.arange(0,Nrecords),Nparts)	
	
rdd1	=	sc.parallelize(indices,Nparts)	
rdd2	=	rdd1.map(lambda	v:	read(v))	
rdd3	=	rdd2.-latMap(lambda	v:	split(v))	
	
model	=	BisectingKMeans.train(rdd3,	k=6)	
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Coherent	phase	space	structures	(blobs,	holes,	
clumps,	etc.)	
•  Various	opinions	on	

importance/long-term	
existence	of	phase	space	
structures	in	strong	turbulence		
[Dupree	Phys	Fluids	1972,	Krommes	
PoP	1997,		
Kosuga	NF	2017]	

•  Inves2ga2ng	single	PDF	from	simula2on	can	be	misleading	
due	to	noise	

•  Apply	K-means	clustering	to	determine	regions	in	velocity	
space	which	correlate	well	

v//	/	vth	

v⟂/vth	
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Spark	Mo2va2on	-	can	we	find	common	
signatures	in	velocity	space?	

a	 electrons	 ions	

Distribu2on	func2ons	Density	fluctua2ons	

~1us	
later	

v//	/	vth	R	

Z	

Z	

v//	/	vth	

v⟂/vth	

v⟂/vth	
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Synthe2c	data	created	to	test	k-means	clustering	with	
plasma	distribu2on	func2ons	
•  Maxwellian	distribu2on	func2on,	with	two	square	regions	of	

velocity	space	with	sinusoidal	modula2on:	
	
	
	

•  K-means	clustering	with	k=3	correctly	separates	the	velocity	space	
regions	which	vary	together	

	

v//	/	vth	

v⟂/vth	

v//	/	vth	

v⟂/vth	
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•  XGC1	distribu2on	func2on	set	from	ITER	simula2on,	500	GB/2me	step		(only	
subset	from	single	2me-slice	used,		
covering	full	pedestal	edge	region,	32	x	31	x	~8M	=	~60GB)	

	

•  Bisec2ng	K-means	algorithm	avoids	issue	of	cluster	ini2aliza2on	leading	to	
local	minima	[Steinbach,	2000]	
		

•  Returned	clusters	noise	based,	subsequent	runs	change	clusters	found	

[R.M.	Churchill,	IEEE	Proc.	of	NY	Sci.	Data	Sum.,	2016]	

v// 

v⟂ x 

12	

Bisec2ng	K-means	finds	no	direct	structure	in	full	
edge	region	
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•  XGC1	distribu2on	func2on	set	from	ITER	simula2on,	500	GB/2me	step		(only	
subset	from	single	2me-slice	used,		
covering	only	high	turbulence	regions	in	pedestal/SOL,		
32	x	31	x	~60k	=	~450MB)	

	

•  Bisec2ng	K-means	algorithm	avoids	issue	of	cluster	ini2aliza2on	leading	to	
local	minima	[Steinbach,	2000]	
		

•  Electron	distribu2on	func2on	shows	ring-like	structure	in	spa2al	regions	of	
high	turbulence	–	but	why?	

[R.M.	Churchill,	IEEE	Proc.	of	NY	Sci.	Data	Sum.,	2016]	

v// 

v⟂ x 
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Bisec2ng	K-means	finds	ring-like	structure	in	
turbulent	spa2al	regions	
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K-means	clustering	aqer	matching	velocity	space	grid	
reveals	more	variable	structure	

•  Renormalize	all	v-space	grids	
onto	same	normalized	grid	
	

•  Rerunning	K-means	clustering	
reveals	more	intricate	structure	

•  High	energies	(E>Eth)	
show	break	near	
trapped/passing	
boundary	
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Summary	

•  Unsupervised	machine	learning	can	be	used	to	search	for	
structure	in	large	data	sets	
	

•  Apache	Spark	provides	a	simplified	framework	for	distributed	
compu2ng,	including	machine	learning	libraries	
	

•  K-means	clustering	on	electron	distribu2on	func2ons	from	the	
gyrokine2c	code	XGC1	shows	dis2nct	structure	in	highly	turbulent	
regions	

•  Par2al	ring-like	structure	
•  separated	at	higher	energies	near	the	trapped/passing	boundary	
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Background	Slides	
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“While	the	intricate	details	of	the	
structures	are	hidden,	the	essence	of	the	
structures	are	revealed	all	the	while	
making	the	imposing	and	solid	structure	
seem	airy	and	nomadic”	
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Future	direc2ons	

Genera2ve	Adversarial	Networks	
(GANs)	
•  InfoGAN:	Maximizes	mutual	

informa2on	for	latent	variables,	
allows	for	disentangled	
representa2on	
[Chen,	NIPS	2016]	
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XGC1	core	f	distribu2on	func2ons	show	liMle	
velocity	space	varia2on	

f	distribu2on	func2ons	from	
random	core	ver2ces	were	
analyzed	with	K-means	
clustering	
	
As	expected,	liMle	varia2on	was	
found	
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